Home Help & Support Search Tips Options: Case:


Accounting | Business | Computer Science | General Studies | Math | Sciences | Civics Exam | Help/Support | Join/Cancel | Contact Us | Login/Log Out

   Need A Tutor?    |   Need Homework Help?                                                                             Help and Support     | Join or Cancel

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam            Final Exam (Proctored)            Page 1    2   3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25    26



College Algebra (MAC-1105C) - Final Exam (Proctored)

College Algebra (4 Credit Hours) - These problems are from Proctor U - Proctored Exam.
The proctored exam had 50 questions, however there are 69 questions on these pages.
I have the steps to solve the problems which should help you with any College Algebra Final Exam.

Page 2


To plot (2, 1), start at the origin (0,0) and move right 2 units and up 1 unit =              (2,1)
To plot (−4, −2), start at the origin (0,0) and move left 4 units and down 2 units =     (−4,−2)
To plot (4, 2), start at the origin (0,0) and move right 4 units and up 2 units. =           (4,2)


A white background with black text

Description automatically generated with low confidence

 y = -4x + 12
We are given the value of y = (-4)
(-4) = -4x + 12
-4 = -4x + 12
-4 – 12 = -4x -12 – 12
-16 = -4x

 = = 4 = x


A picture containing text, screenshot, font

Description automatically generated

5 =

5 = x +

5 = 1.25x
5 ÷ 1.25 = 4
x = 4


College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  


With this problem we need to plug in the values of the ordered pairs and see which equations match.
I have done this below!

First equation:          3 = -2(-4) – 5 | 3 = 8 - 5 | 3 =     3        Matches the ordered pairs!
Second equztion:    3 = -(-4) -1 | 3 = 4 – 1 | 3 = 3
               Matches the ordered pairs!
Third eqution:           3 = -4 – 7 | 3 = -11                                Does not match!
Fourth equation:      3 = 2(-4) + 8 | 3 = -8 + 8 |
3 = 0
           Does not match!



We have already worked on a similar problem. We cross-multiplied!
So, we multiply the numerator (top) of the first fraction by the denominator (bottom)
of the second fraction.
And vice versa

2(x − 4) = x
5 =                  2x – 8 = x 5
Move 5 to the left of x       2x – 8 = 5x
Move all terms containing x to the left side of the equation.
−3x – 8 = 0
Add 8 to both sides of the equation. −3x = 8
Divide each term in −3x = 8 by −3 and simplify.
x = The result can be shown in multiple forms. Exact Form:
x=



y = x + 2
The slope-intercept form is:
y = mx + b where
m = the slope
b = y-intercept
We find the values of m and b using the form y = mx + b
We know m = 1, because m is next to x. 1x is the same as x.
So, we know m = 1 and b = 2.
And we know the value of y = 1 + 2.
We now have two ordered pairs.
x = 0, y = 2 or (0, 2)
x = 1, y = 3 or (1, 3)

Now we can plot the equation y = x + 2

A graph of a function

Description automatically generated



1x5 x 1x-3
1 x 1 = 1
x5 x 1x-3 = 5 + -3 = x2


College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  

This looks more difficult than it really is!
First, we need to remove the radical -3 from the left side.
We do this by adding it to the right side of the = sign and adding it to 1
however, we need to square the result. So, we are left with:

 = 12 + 32 =            = 42

Now this is much more manageable.
Now we simplify both sides of the equation.

42 = 16

Since there is a variable inside a radical, the square root is ½ power.
Really, we can remove the radical all together,
however, we will be formal since this might be the first time for some students.
To simplify the radical, we do the following:

 = ((3x – 2)1/2)2     you see ½ and 2 cancel out the radical.

So, we are left with:
3x – 2 = 16
Now we add 2 to both sides and divide both sides by 3.
3x – 2 + 2 = 3x, and 16 + 2 = 18              we left with 3x = 18
18 / 3 = 6
x = 6



1st has only one term.
2nd has 3 terms.
3rd has 1 term.
4th is not a polynomial because it has a square root.



Take the specified root of both sides of the equation to eliminate the exponent on the left side.
3x +5 = ±

Simplify 3x +5 = ±

3x + 5 = ± 4i
The complete solution is the result of both the positive and negative portions of the solution.
First, use the positive value of the ± to find the first solution.
3x + 5 = 4i
Move all terms not containing x to the right side of the equation.
3x = −5 + 4i
Divide each term in 3x = −5 + 4i by 3 and simplify.
x = -
±



College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  

a         b     c

7x2 + 4x + 4 = 0

Use the quadratic formula to find the solutions.
 
 =

Simplify - Simplify the numerator.            
Raise 4 to the power of 2              x = 
Multiply −4
7 4             =
Subtract 112 from 16     =
Rewrite −96 as −1(96)   
Rewrite −1(96)               
Rewrite −1 as i                

 Move 4 to the left of I    

 Simplify                simplify


  a      b     c   
-x2 + 4x – 6 = 0

Use the quadratic formula to find the solutions.

             =

 

Follow the same steps as above!


x(x – 6y)        = x2- 6xy +

12y(x-6y)      =     12xy – 72y2

                                    x2 – 6xy – 72y2



                       2x(3x + 5) = 6x2 + 10x

                        -1(3x + 5) =   -3x – 5

                                              6x2 + 7x - 5


College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  

(2w + 30)w = 200   =         2w2 + 30w = 200 =             2w2 + 30w – 200 = 0
Solve for W              2(w – 5)(w + 20) = 0
w – 5 = 0
w = 0 + 5 = w = 5
w + 20 = 0
w = 0 – 20 = -20
Since the length is 30 ft longer than 2 times the width then
the length = 20 and the width =  5

Let’s check the answer.
The length is 30 ft longer than 2 times the width and the area is the width times the length

2 x 5 = 10
10 + 30 = 40
40 x 5 = 200


-0.5x3(8x4)    = -4x7

-0.5x3(-2x2) = x5

-0.5x3(7x)     = -3.5x4

                        -4x7 + x5 -3.5x4


(x2 – 2x + 3)(x + 2)
x2(x + 2) =      x3        + 2x2
-2x(x + 2) =   -2x2 – 4x
3(x + 2) =      3x + 6
x3 – x + 6



Write for y


swap the variables.


Solve for y
Multiple both sides by 5


y + 3 = 5x (subtract by 3)
y = 5x = 3

 


Use the TI84 Plus or similar calculator for this and enter as shown below.

25,000(20.025(4)) or 25,000(2.1) = 26,794.33656


*Whenever there is no base, the base is assumed as 10.
In this case, the base is 16, so we write the equation like so and solve for x

by = x
16x = 8
Find equal bases.
(24)x = 23
24x = 23
Divide both sides by 2.
4x = 3
Divide both sides by 4.
4/4 = 3/4, so     x = ¾


A = Pert
A = the total amount = 10,000 + 20,000 = 30,000
30,000 = 20,000e0.055t
Divide both sides by 20,000.
1.5 = e0.055t
ln1.5 = 0.055t

t
=   

Use TI84 Plus to solve. ln(1.5/0.055)
t
= 7.372092875 = round to 7.4




8(3x
2) = 24x2
8(5) = 40
Now we join the equation = 24x2 + 40



First create equal bases by squaring 9.
3x = 32(x +5)
Then divide both sides by 3.
x = 2(x + 5)     Then simplify    x = 2x + 10
then subtract 2x from both sides.
x – 2x = 10     simplify    -x = 10
Then divide both sides by -1            x = -10



College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3


More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25    26


Home
Accounting & Finance Business
Computer Science General Studies Math Sciences
Civics Exam
Everything Else
Help & Support
Join/Cancel
Contact Us
 Login / Log Out