Home Help & Support Search Tips Options: Case:


Accounting | Business | Computer Science | General Studies | Math | Sciences | Civics Exam | Help/Support | Join/Cancel | Contact Us | Login/Log Out

   Need A Tutor?    |   Need Homework Help?                                                                             Help and Support     | Join or Cancel

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam            Final Exam (Proctored)            Page 1    2   3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25    26



College Algebra (MAC-1105C) - Final Exam (Proctored)

College Algebra (4 Credit Hours) - These problems are from Proctor U - Proctored Exam.
The proctored exam had 50 questions, however there are 69 questions on these pages.
I have the steps to solve the problems which should help you with any College Algebra Final Exam.


Page 1


 

Graphical user interface, text

Description automatically generated with medium confidence
Explanation:
Integers include positive numbers, negative numbers, and zero. 

A white background with black text

Description automatically generated with low confidence
Explanation
Move all terms not containing |x| to the right side of the equation. Ixl = 8
Remove the absolute value term. This creates a ± on the right side of the equation because Ixl = ± x
x = ±8
The complete solution is the result of both the positive and negative portions of the solution.
First, use the positive value of the ± to find the first solution.
x = 8
Next. use the negative value of the ± to find the second solution.
x = -8
The complete solution is the result of both the positive and negative portions of the solution.
x = 8, -8


Explanation
-2 is less than +3
28 ÷ 7 = 4 = 4 is greater than 3
5 is greater than 3.
9/3 = 3 

Graphical user interface, text, application, email

Description automatically generated
Explanation
-12 + 7 = -5, -5 + -5 = -10
6 + (-13) = -7, -7 + 16 = 9
-7 + 12 = 5
9 + -14 = -5 


 
Explanation:
Simplify both sides of the inequality:             -2x + 4 ≥ 17
Subtract 4 from both sides                                 -2x ≥ 13
Divide both sides by -2                                       
X =                                                                       

Graphical user interface, text, application, email

Description automatically generated
 
Explanation
-19 – (-7) =
-19 – (-7) = -19 + 7             Note that -1(-7) = 7
So, -17 + 7 = -12     the answer = -12 


 
Explanation:
Product means to multiply.
5 · 4 = 20 

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  


 
Quotient is a result obtained by dividing one quantity by another.
17 ÷ 4 = 4.25 


Factor like terms and then combine.
7b – 3b = 4b
4b + 4 = 4b + 4


Substitute for x in the expression.
3(3) – 2(3)2 – 7
9 – 2(9) – 7
9 – 18 – 7
9 – 18 = -9 + -7 = -16 


Divide both sides by like terms.
-14/ 6 (both sides can be divided by 2) = -14 ÷ 2 = -7 and 6 ÷ 3 = 2 =                            -7/3
14/6 (both sides can be divided by 2) = 14 ÷ 2 = 7 and 6 ÷ 3 = 2 =                                 7/3
28/12 (both sides can be divided by 4) = 28 ÷ 4 = 7, and 12 divided by 4 = 3 =           7/3
-26/12 (both sides can be divided by 2) -26 ÷ 2 = -13, and 6 ÷ 2 = 3 =                           -13/6 

Graphical user interface, text, application

Description automatically generated
Explanation:
The simplest way to do this is flip or cross multiply.
Let’s cross multiply! Start from top left and multiply:
1 · 8 = 8         (8 goes on the top of the fraction)
Now multiply:
2 · x = 2x       (2x goes on the bottom of the fraction)
Now we simply divide because we have :
8 / 2 = 4
x = 4 

A picture containing text, screenshot, font, algebra

Description automatically generated
Explanation:
Formulas:
x + y = 72
.40x + .64y = 72(.55)
 
y = 72 – x
.40x + .64(72 – x) = 39.6
.40x + 46.08 - .64x = 39.6
-24x + 46.08 = 39.6
-.24x = -6.48
x = -.648 ÷ -.24 = 27
 
Blend A = x = 27
 
x + y = 72
27 + y = 72
72 – 27 = y
45 = y

Blend B = y = 45

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  


Explanation:
x + y = 5
.17x + .42y = 5(.32)
y = 5 – x
.17x + .42(5 – x) = 5(.32)
.17x + 2.1 - .42x = 1.6
-.25x + 2.1 = 1.6
-.25x = -0.5
x = 2
17% blue paint  x = 2
 
Check
x + y = 5
2 + y = 5
y = 3
42% blue paint = y = 3


Explanation:
x + y = 6
.30x + .07x = 6(.21)
y = 6 – x
.30x + .07(6 – x) = 6(.21)
.30x + .42 - .07x = 1.26
.23x +.42 = 1.26
.23x = .84
x = 3.65
30% copper alloy = x =                 3.65
 
Check
x + y = 6
3.65 + y = 6
y = 2.35
7% copper = y = 2.35 


Explanation:
3 · 22 = 12
3 · -6 = -18
+ 2 · 32 = 18
12 – 18 + 18 = 12 

 

Explanation:
x + y = 186
12x + 16y = 2640
y = 186 – x
12x + 16(186 – x) = 2640
12x + 2976 – 16x = 2640
-4x + 2976 = 2640
-4x = -336
x = 84
$12 tickets = x =                 84
 
Check
x + y = 186
84 + y = 186
y = 102
$16 tickets = y = 102
$12 (84) + $16 (102) = 2,640
1,008 +1,632 = 2,640 

 

Explanation:
x + y = 3,200
40x + 60x = 152,000
y = 3200 – x
40x + 60(3200 – x) = 152,000
40x + 192,000 – 60x = 152,000
-20x = 152,000 – 192,000
20x = -40,000
x = 2,000
$40 tickets = x = 2,000
x + y = 3,200
2,000 + y = 3,200
y = 1,200

Check
40(2,000) + 60(1,200) = 152,000 

 

Explanation
4 · 2 = 8
When multiplying exponents, the exponents are added.
4a5 · 2a8 = 813 

Graphical user interface, text, application

Description automatically generated
Explanation
Simplify each term. Apply the distributive property.
5x3−3x2+2x−6−(7x3) − (−2x2) − (8x)− −3
Simplify.       5x3−3x2+2x−6−7x3+2x2−8x+3
Simplify by adding terms.
Subtract 7x3 from 5x3
−2x3 − 3x2 + 2x – 6 + 2x2 − 8x + 3
Add −3x2 and 2x2
−2x3−x2+2x−6−8x+3
Subtract 8x from 2x
−2x3−x2−6x−6+3
Add −6 and 3
−2x3−x2−6x−3 

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3

More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25  


Explanation
(3x – 5)2 =
 
(3x – 5) (3x – 5)
 
3x · 3x =         9x2
-5 · 3x =         -15x
-5 · 3x =         -15x
-5 · -5 =          25
Now we combine like terms and simplify
9x2  (- 15x – 15x) + 25
9x2 – 30x + 25 


Explanation
Factor out the greatest common factor from each group.
Group the first two terms and the last two terms.
(a2b − aby) + axy − xy2
Factor out the greatest common factor (GCF) from each group.
ab (a − 1y) + xy (a − 1y)
Factor the polynomial by factoring out the greatest common factor, a − 1y
(a−1y) (ab + xy)
Rewrite −1y as −y.
(a − y) (ab + xy) 


Explanation
x + .30x = 32.76
1.30x = 32.76
x = 32.76 ÷ 1.30
x = 25.20
 
Check
25.20 + 25.20(.30) = 32.76


Explanation
For a polynomial of the form ax2 + bx + c, rewrite the middle term as a sum of two terms whose
product is a c = 2 5 = 10 and whose sum is b = −7.
Factor −7 out of −7x          2x2−7(x) + 5
Rewrite −7   as −2 + −5     2x2 + (−2 −5) x + 5
Apply the distributive property.                      2x2−2x−5x+5
Factor out the greatest common factor from each group.
Group the first two terms and the last two terms.
(2x2 − 2x) −5x +5
Factor out the greatest common factor (GCF) from each group.
2x (x − 1) −5(x −1)
Factor the polynomial by factoring out the greatest common factor, x−1.
(x−1) (2x−5) 


Explanation
For a polynomial of the form ax2 + bx + c, rewrite the middle term as a sum of two terms
whose product is a c = 3 −5= −15 and whose sum is b = 2
Factor 2 out of 2x              3x2+2(x)−5
 
Rewrite 2 as −3 plus 5                  3x2 +(−3 +5) x − 5
 
Apply the distributive property.
3x2 −3x + 5x − 5
Factor out the greatest common factor from each group.
Tap for fewer steps...
Group the first two terms and the last two terms.
(3x2 − 3x) +5x − 5
Factor out the greatest common factor (GCF) from each group.
3x (x − 1) +5(x − 1)
Factor the polynomial by factoring out the greatest common factor, x − 1
(x − 1) (3x + 5)

College Algebra (MAC-2233) Lessons:        Pre-Assessment Exam                  Final Exam (Proctored)            Page 1    2    3


More Lessons  1    2    3    4    5    6    7    8    9   10   11   12   13    14    15    16    17    18    19    20    21    22    23    24    25    26


Home
Accounting & Finance Business
Computer Science General Studies Math Sciences
Civics Exam
Everything Else
Help & Support
Join/Cancel
Contact Us
 Login / Log Out